If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-64=0
a = 4; b = 8; c = -64;
Δ = b2-4ac
Δ = 82-4·4·(-64)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{17}}{2*4}=\frac{-8-8\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{17}}{2*4}=\frac{-8+8\sqrt{17}}{8} $
| 77+14x-39=19x2 | | 4y+16=–8 | | 4(1/8t+2)=2(t-8)-1/2t | | -6s+3-8=-20 | | -4(w-4)=4w-16 | | 0.0169=c² | | -2(3k+5)=27-4k | | x+12=9x3 | | x/42=105/3 | | 30=-4r+2r | | 2y2+4-9=0 | | 3x+5=6+5 | | 27b-(17b+37)=73 | | -4x-3-2=34 | | 78-28=x | | 3x-5=6+5 | | 7=x-4/10 | | 4x+3=93-6x | | -4y-5+6=23 | | (z+9)^2=7 | | -x+3=(1/2)x^2-1 | | -2(4w-6)+4w=4+2(5w-1) | | 5z-17=17 | | -28=3(9v+6) | | 7=x-4÷10 | | 105-11x=-27 | | 4(8n+5)=-22-3n | | 11=5x+20 | | 3(v-7)-6=-4(-3v+6)-3v | | 2(6c+3)=-29-5c | | 3(y+8)=-2(8y-4)+5y | | -18=4t+10 |